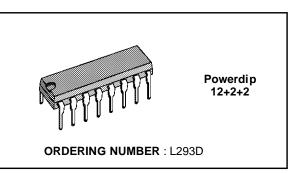
L293D

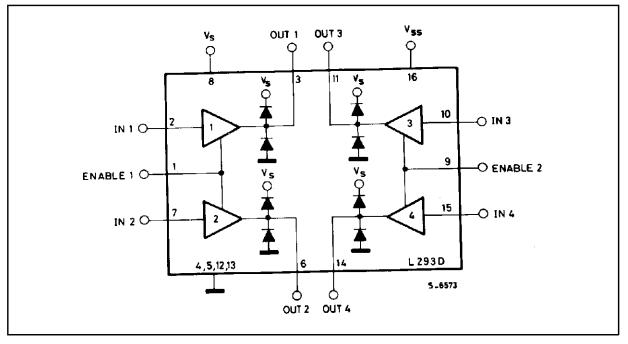
PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES


PRELIMINARY DATA

- 600mA. OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (NON REPETITIVE) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5v (HIGH NOISE IMMUNITY
- INTERNAL CLAMPS DIODES

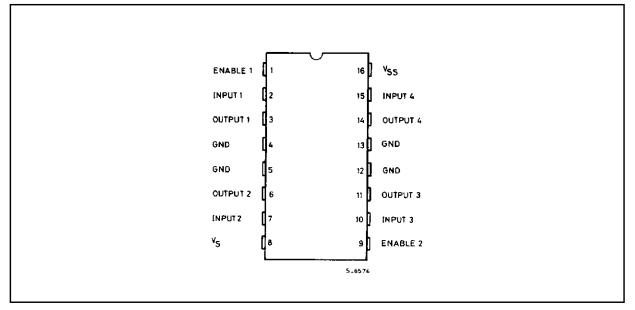
DESCRIPTION

The L293D is a monolithic integrated high voltage, high current four channel vriver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.


To simplify use as two bridges is pair of channels is equiped with an enable input. A separate supply innput is provited formthe logic, allowing operation at a low voltage and internal clamp diodes are included.

This device is suitable for use in switching applications at frequencies up to 5 KHz.

The L293D is assembled in a 16 lead plastic packege which has 4 center pins connected together and used for heatsinking.


BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	36	V
V _{SS}	Logic Supply voltage	36	V
Vi	Input voltage	7	V
Ven	Enable voltage	7	V
lo	Peak output current (100µs non repetitive)	1.2	А
Ptot	Total power dissipation at T _{ground-pins} = 80°C	5	W
T _{stg} , Tj	Storage and junction temperature	-40 to 150	°C

CONNECTION DIAGRAM

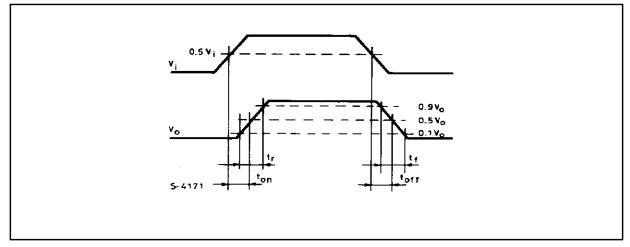
THERMAL DATA

Symbol	Parameter	Value	Unit
Rth-j-case	Thermal resistance junction-case max	14	°C/W
Rth j-case	Thermal resistance junction-ambient max	80	°C/W

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vs	Supply voltage		Vss		36	V	
V_{ss}	Logic supply voltage (pin 16)		4.5		36	V	
l _s	Total quiescent supply current (pin 8)	$V_i = L$ $I_o = 0$ $V_{en} = H$		2	6		
		$V_i = H \qquad I_o = 0 \qquad V_{en} = H$		16	24	mA	
		V _{en} = L			4		
I _{ss}	Total quiescent logic supply current (pin 16)	$V_i = L \qquad I_o = 0 \qquad V_{en} = H$		44	60	mA	
		$V_i = H \qquad I_o = 0 \qquad V_{en} = H$		16	22		
		V _{en} = L		16	24		
V _{IL}	Input low voltage (pin 2, 7, 10, 15)		-0.3		1.5	V	
Vін	Input high voltage (pin 2, 7, 10, 15)	$V_{\text{SS}} \leq 7V$	2.3		Vss	v	
		V _{ss} >7V	2.3		7		
Ι _{ΙL}	Low voltage input current (pin 2, 7, 10, 15)	V _{IL} = 1.5V			-10	μΑ	
Іін	High voltage input current (pin 2, 7, 10, 15)	$2.3{\leq}~V_{IH}{\leq}~V_{ss}~\text{-}0.6V$		30	100	μA	
V _{enL}	Enable low voltage (pin 1, 9)		-0.3		1.5	V	
VenH	Enable high voltage (pin 1, 9)	$V_{ss} \leq 7V$	2.3		Vss	v	
		V _{ss} 7V	2.3		7	v	
l _{enL}	Low voltage enable current (pin 1, 9)	V _{enL} = 1.5V		-30	-100	μA	
i _{enH}	High voltage enable current (pin 1, 9)	$2.3V \leq V_{enH} \leq V_{ss} \text{ -} 0.6V$			± 10	μA	
V _{CEsatH}	Source output saturation voltage (pin 3, 6, 11, 14)	I _o = -0.6A		1.4	1.8	V	
V _{CEsatL}	Sink output saturation voltage (pins 3, 6, 11, 14)	I _o +0.6A			1.2	1.8	
VF	Clamp diode forward voltage	l _o = 600 mA		1.3		V	
tr	Rise time (*)	0.1 to 0.9 V _o		250		ns	
t _f	Fall time (*)	0.9 to 0.1 V _o		250		ns	
t _{on}	Turn-on delay (*)	0.5 V _i to 0.5 V _o		750		ns	
t _{off}	Turn-off delay (*)	0.5 V_i to 0.5 V_o		200		ns	

ELECTRICAL CHARACTERISTICS (For each channel, $V_s = 24V$, $V_{ss} = 5V$, $T_{amb} = 25$ °C, unless otherwise specified)

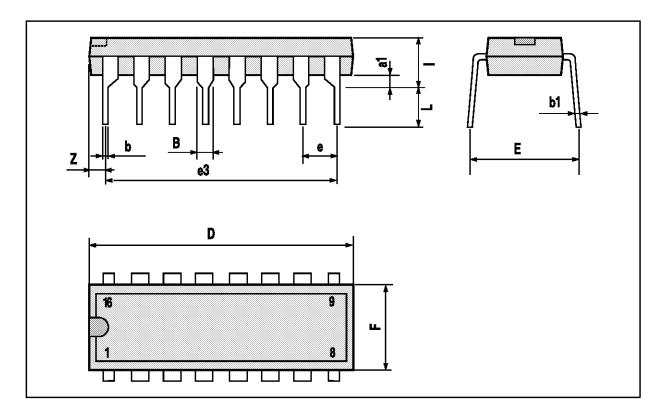
(*) See fig.1


TRUTH TABLE (One channel)

INPUT	ENABLE (*)	OUTPUT		
н	н	н		
L	Н	L		
н	L	Z		
L	L	Z		

Z = High output impedance

(*) Relative to the considered channel


Figure 1. Switching Times

POWERDIP	PACKAGE	MECHANICAL	DATA
----------	---------	------------	------

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.85		1.40	0.033		0.055	
b		0.50			0.020		
b1	0.38		0.50	0.015		0.020	
D			20.0			0.787	
E		8.80			0.346		
е		2.54			0.100		
e3		17.78			0.700		
F			7.10			0.280	
I			5.10			0.201	
L		3.30			0.130		
Z			1.27			0.050	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

